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ABSTRACT

Fuzzy rule based systems have been very popular in many engineering applications. However,
when generating fuzzy rules from the available information, it may result in a sparse fuzzy rule
base. Fuzzy rule interpolation techniques have been established to solve the problems encountered
by sparse rule bases. In most engineering applications, the use of more than one input variable is
common. This paper proposes an improved multidimensional fuzzy rule interpolation technique to
handle large dimensional input spaces. Illustration examples are also generated and results shown
that this improved multidimensional α-cut based fuzzy interpolation technique can be used in
engineering applications.

1. INTRODUCTION

In most fuzzy engineering applications, the fuzzy rule
base is set up using any available information. The
information can be in the form of measure data or
from some computational simulation. Quite often, the
information provided is not enough to construct a
complete and comprehensive fuzzy rule base. In the
case when a fuzzy rule base contains gaps, which is a
sparse rule base, classical fuzzy reasoning methods
can no longer be used. This is due to the lack of
inference mechanism in the case when observations
find no fuzzy rule to fire. Fuzzy rule interpolation
techniques provide a tool for specifying an output
fuzzy set whenever at least one of the input spaces is
sparse. Kóczy and Hirota [1] introduced the first
interpolation approach known as (linear) KH
interpolation. This is based on the Fundamental
Equation of Rule Interpolation (refer to equation (1)).
This method determines the conclusion by its α-cuts
in such a way that the ratio of distances between the
conclusion and the consequents should be identical
with that among observation and the antecedents for
all important α-cuts (breakpoint levels). This is shown
in the equation as follow (refer to Figure 1 for
notations):

)*,(:)*,()*,(:)*,( 2121 BBdBBdAAdAAd =       (1)

Two conditions apply for the usage of the linear
interpolation. First, there should exist an ordering on
the input and output universes. This allows us to
introduce a notion of distance between the fuzzy sets.
Second, the input sets (antecedents, consequents and
the observation) should be convex and normal fuzzy
sets.

The KH interpolation possesses several advantageous
properties. Firstly, it behaves approximately linearly
between the breakpoint levels. Secondly, its
computational complexity is low, as it is sufficient to
calculate the conclusion for the breakpoint level set.
Moreover, its extension is found to be a universal
approximator [2]. However, for some input situation it
fails to result in a directly interpretable fuzzy set,
because the slopes of the conclusion can collapse as
shown in Figure 1.

Several approaches were proposed in the last decade
to alleviate this inconvenience [3, 4, 5, 6]. These
approaches either determine conditions with respect to
the input sets [3, 4] or implement conceptually
different method to avoid abnormal conclusions [5, 6].
The new concepts, however, do not preserve the low
computational complexity of the original KH method.
Recently, a modification of the original method has
been proposed which solves the problem of abnormal
conclusions while maintaining its advantageous
properties [7, 8]. This is known as Modified Alpha-
Cut fuzzy Interpolation (MACI). This method is
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selected for this study of interpolating
multidimensional input. However, our study in this
paper is limited to triangular and trapezoidal
membership functions.

Figure 1: Problem of linear KH fuzzy interpolation.

In most fuzzy applications, the input vector normally
involve more than one variable, therefore the
characteristics of multidimensional fuzzy rule
interpolation is of much interest [9,10]. In this paper,
an improved multidimensional α-cut based fuzzy
interpolation technique is proposed here to make use
of the advantages of the MACI technique [8], as well
as the conservation of fuzziness technique [6].

2. IMPROVED MULTIDIMENTIONAL
FUZZY RULE INTERPOLATION

This method incorporates features of the MACI and
the conservation of fuzziness technique. It makes use
of the vector description of the fuzzy sets by
representing them in characteristic points, and the
coordinate transformation features of the MACI. At
the same time, it can take the fuzziness of the fuzzy
sets in the input spaces at the conclusion as those
presented in the conservation of fuzziness technique.
The advantage of this improved fuzzy interpolation
technique not only takes the fuzziness of the sets at the
input spaces, but also make use of the information of
the core at the consequents.

Refer to Figure 2 for notations used in the following
formulas. For k input dimensions, the reference
characteristic point of the interpolated conclusion with
the use of Euclidean distance is:
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By using the above reference point, the left and right
cores of the conclusion are calculated as follows:
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Figure 2: Notations for the formulae



After calculating the cores of the two sides, the two
flanks can then be calculated. When calculating the
left and right flanks of the conclusion, the relative
fuzziness of the fuzzy sets in all the input spaces are
taken into consideration as follows:

Based on Ai1 and B1
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In multidimensional input spaces,
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3. CASE RESULTS AND DISCUSSION

3.1 One Dimensional Input Space

To illustrate the features of this improved
multidimensional (IMUL) fuzzy rule interpolation
technique, it is used for one-dimensional input space
first before applying to multidimensional input spaces.
This is necessary to ensure that the proposed IMUL
technique can interpolate fuzzy rule just like the other
fuzzy interpolation techniques.

A few examples in [6] are used for one-dimensional
illustrations as follows. The notations used in the

figures are as follow: KH for the KH technique in [9],
MACI for the MACI technique in [8], and IMUL for
this proposed IMUL fuzzy interpolation technique.

Test 1: (refer to Figure 3)

A1: 0, 5, 25, 30
A2: 70, 75, 95, 100
B1: 0, 15, 20, 30
B2: 70, 85, 90, 100
A*: 35, 55, 55, 60

B* (KH): 35, 65, 50, 60
B* (MACI): 40, 55, 60, 70
B* (IMUL): 32, 55, 60, 67

Figure 3: Fuzzy Interpolations for Test 1.

Figure 3 has shown the case where KH fuzzy
interpolation technique generated abnormal
conclusion. However, MACI and this IMUL produced
results that avoided the abnormal conclusion. By using
IMUL, the fuzziness of the left flank and right flank of
the conclusion are taken from the observation as
oppose to MACI, which takes its fuzziness from the
neighbouring consequents. Beside this, the results
generated from MACI and IMUL are both acceptable.

Test 2: (refer to Figure 4)

A1: 10, 10, 10, 10
A2: 90, 90, 90, 90
B1: 30, 30, 30, 30
B2: 95, 95, 95, 95
A*: 40, 45, 55, 70

B* (KH): 54, 58, 67, 79
B* (MACI): 62, 62, 62, 62
B* (IMUL): 58, 62, 62, 79



Figure 4: Fuzzy Interpolations for Test 2.

Figure 4 has shown the case where the three
interpolation technique produce reasonable
conclusions. However, MACI produces crisp
conclusion due to the influence of the two
neighbouring consequents. In this test, IMUL
technique produces conclusion that is reasonable and
comparable to those generated from the original KH
technique.

Test 3: (refer to Figure 5)

A1: 0, 20, 30, 40
A2: 70, 80, 90, 100
B1: 0, 30, 35, 40
B2: 80, 85, 95, 100
A*: 45, 45, 60, 60

B* (KH): 51, 53, 69, 60
B* (MACI): 44, 58, 65, 70
B* (IMUL): 58, 58, 65, 65

Figure 5: Fuzzy Interpolations for Test 3.

Figure 5 has again shown the case where KH fuzzy
interpolation technique generated abnormal
conclusion. From the above three illustration
examples with one input space, it has been shown that
the proposed interpolation technique can be used to
generate results. From all the tests, it has also been
shown that this IMUL not only uses the information of
the core from the consequents but also takes the
fuzziness of the sets at the input space in producing
the interpolated conclusion.

3.2 Multidimensional Input Spaces

After showing the results in one-dimensional
problems, it is now used in cases where
multidimensional input spaces are used. The
illustration example used in [9] with 5 input variables
is used for this purpose as follows:

A11: 6, 13, 13, 20
A12: 61, 69, 69, 76
A21: 10, 20, 20, 30
A22: 77, 86, 86, 96
A31: 6, 14, 14, 24
A32: 86, 93, 93, 100
A41: 21, 26, 26, 30
A42: 47, 59, 59, 70
A51: 16, 26, 26, 36
A52: 81, 83, 83, 85
B1: 24, 31, 31, 39
B2: 81, 86, 86, 90

Test 4:
In this test, fuzzy observations are used in all the input
spaces as those in [9]. Refer to Figure 6 and Figure 7.

A1*: 31, 39, 39, 46
A2*: 67, 69, 69, 70
A3*: 51, 66, 66, 80
A4*: 26, 33, 33, 40
A5*: 61, 66, 66, 70

B* (KH): 59, 65, 65, 69
B* (MACI): 61, 66, 66, 72
B* (IMUL): 47, 66, 66, 84



Figure 6: Input fuzzy sets for Test 4.

Figure 7: Output fuzzy sets for Test 4.

In this test, the characteristic of the IMUL by using
the fuzziness from all the input observations and the
cores of the neighbouring consequents can also be
observed.

Test 5:
In this test, all the input fuzzy observations have been
changed to singleton values as shown in Figure 8. The
output fuzzy interpolation results are shown in Figure
9.

A1*: 39, 39, 39, 39
A2*: 69, 69, 69, 69
A3*: 66, 66, 66, 66
A4*: 33, 33, 33, 33
A5*: 66, 66, 66, 66

B* (KH): 66, 65, 65, 64
B* (MACI): 61, 66, 66, 72
B* (IMUL): 66, 66, 66, 66

Figure 8: Input fuzzy sets for Test 5.

Figure 9: Output fuzzy sets for Test 5.



In this test, all the observations in Test 4 are changed
to crisp observations, but the interpolated conclusion
from MACI remains the same as compared to the
result in Test 4. This seems to be inappropriate, as the
observations have no effect to the interpolated
conclusion. As for the KH technique, abnormal
conclusion is generated. The conclusion generated
from IMUL technique changes to crisp value with the
changes in the observations. This seems to be more
reasonable in this case.

From Test 4 and 5 where 5 input variables are used,
the characteristics of the improved multidimensional
α-cut fuzzy interpolation technique present consistent
results. In this case, the relative fuzziness of the output
fuzzy set is calculated from the effective fuzziness of
all the input sets. The core information of the
conclusion is again based on the information provided
by the core of the consequents.

4. CONCLUSION

In this paper, a technique for interpolating
multidimensional fuzzy rules using α-cut fuzzy
interpolation is presented. An improved
multidimensional α-cut based fuzzy interpolation
technique is proposed here to make use of the
advantages of the modified α-cut fuzzy interpolation
technique [8] and the conservation of fuzziness
technique [6]. This proposed technique takes into
consideration the degree of fuzziness in the rule base,
by measuring from the neighbouring rules in the
multidimensional fuzzy rule base. Illustration test
examples have also been presented and shown that
this proposed technique can be used efficiently for
interpolating fuzzy rules with multidimensional input
variables. This technique has also shown successful
application in the field of hydrocyclone control
modeling [11].
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